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The Low-Temperature Phase of Kac-Ising Models 
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We analyze the low-temperature phase of ferromagnetic Kax-Ising models in 
dimensions d>~ 2. We show that if the range of interactions is ),-~, then two dis- 
joint translation-invariant Gibbs states exist if the inverse temperature fl satisfies 
fl - 1/> ~,̂ , where x = d( 1 - e)/(2d + 2 )(d + I ), for any e > 0. The proof involves 
the blocking procedure usual for Kac models and also a contour representation 
for the resulting long-range (almost) continuous-spin system which is suitable 
for the use of a variant of the Peierls argument. 

KEY WORDS: Ising models; Kac potentials; low-temperature Gibbs states; 
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1. I N T R O D U C T I O N  

In  1963 K a c  et aL ~ i n t roduced  a s tat is t ical  mechanica l  mode l  of  par t ic les  
in terac t ing  via long, but  f ini te-range interact ions ,  i.e., t h rough  potent ia l s  of  
the form Jy(r) = ~'dJ(3,r), where J is some funct ional  of  b o u n d e d  suppor t  or  
r ap id  decrease  [ the  or iginal  example  was J ( r ) = e - " ]  and  y is a small  
parameter .  These  mode l s  were in t roduced  as microscopic  mode l s  for the 
van der  W a a l s  theory  of  the l i qu id -gas  t ransi t ion.  In fact, in the context  of  
these mode l s  it p roved  poss ible  to der ive in a ma themat i ca l ly  r igorous  way 
the van der  W a a l s  theory  inc luding the Maxwel l  cons t ruc t ion  in the l imit  
?$0 .  In ma thema t i ca l  terms,  this is s ta ted  as the L e b o w i t z - P e n r o s e  
theorem~12k The d i s t r ibu t ion  of  the densi ty  satisfies in the inf ini te-volume 
l imit  a l a rge-devia t ion  pr incip le  wi th  a ra te  function that ,  in the l imit  as 7' 
tends to zero, converges  to the convex hull of  the van der  W a a l s  free energy. 
F o r  a review of  these results,  see, e.g., the t ex tbook  by  Thompson .  ~ tsI 
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Only rather recently has there been a more intense interest in the study 
of Kac models that went beyond the study of the global thermodynamic 
potentials in the Lebowitz-Penrose limit, but that also considers the dis- 
tribution of local mesoscopic observables. This program has been carried 
out very nicely in the case of the Kac-Ising model in one spatial dimension 
by Cassandro et al. 16~ A closely related analysis had been performed earlier 
by Bolthausen and Schmock. ~4) These analyses can be seen as a rigorous 
derivation of a Ginzburg-Landau-type field theory for these models. Very 
recently, such an analysis was also carried out in a disordered version of 
the Kac-Ising model, the so-called Kac-Hopfield modelJl'2~ 

An extension of this work to higher dimensional situations would of 
course be greatly desirable. This turns out to be not trivial and, sur- 
prisingly, even very elementary question about the Kac model in d~>2 
are unsolved. One of them is the natural conjecture that the critical 
inverse temperature fl,.(~,) in the Kac model should converge, as y J, 0, 
to the man-field critical temperature. This conjecture can be found, e.g., in 
a recent paper by Cassandro et al. cs~ In that paper a lower bound fl,.(y) >1 
1 +b) ,2 [ln),l is proven for d = 2 .  A corresponding upper bound is only 
known in a very particular case where reflection positivity can be used. t3) 

In addressing this question one soon finds the reason for this unfor- 
tunate state of affairs. All the powerful modern methods for analyzing the 
low-temperature phases of statistical mechanical models, such as low- 
temperature expansions and the Pirogov-Sinai theory, have been devised 
in view of models with short-range (often nearest neighbor) interactions, 
with possible longer range parts treated as some nuisance than be shown 
to be quite irrelevant. To deal with the genuinely long-range interaction in 
Kac models, that is, to exploit their long-range nature, these methods 
require substantial adaptation. The purpose of the present paper is to help 
to develop adequate techniques to deal with this problem--that beyond 
proving the conjecture of ref. 5 will, we hope, also provide a basis for the 
analysis of disordered Kac models. (Together with possible other means 
not touched by the presented paper; most notably with suitably developed 
expansion techniques for long-range models.) 

The model we consider is defined as follows. We consider a measure space 
(5p, i f )  where ,5,~ - { - 1, 1 } ~"is cquipped with the product topology of the dis- 
crete topology on { - 1, 1 } and .~- is the corresponding finitely generated sigma 
algebra. We denote an element of 5: by a and call it a spin configuration. If 
A c Z d, we denote by a.~ the restriction of a to A. For any finite volume A we 
define the energy of the configuration aA (given the external configuration a,~, ) as 

Hr.A(a.n, aa.) -- -- �89 ~ J,.(i--j) a,aj--  ~ J , , ( i - j )  aia: 
i , j e  .! i t  A,.]r A 

(1.1) 
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where Jy(i)=-TdJ()'i) and J : R  d--+ R is a function that satisfies 
~,, dx J ( x )=  1. For  simplicity we will assume that J has bounded support, 
but the extension of our proof  to more moderate assumptions on the decay 
properties of J is apparently not too difficult. To be completely specific we 
will even choose J ( r )  -- c J  I.,1 ~< ,, where c a normalizes the integral of J to 
one. 3 Here [. [ is most conveniently chosen as the sup-norm on R d. 

Finite-volume Gibbs measures ("local specifications") are defined as 
usual as 

1 
ll ~./~.,,(a., ) = Z,[.,/s.-~ exp[ -flH~.. ,,(aA, qA')] (1.2) 

q where Z~./~.,~ is the usual partition function. Note that under our assump- 
tions on J the local specifications for given A depend only on finitely many 
coordinates of r/. An infinite-volume Gibbs state /~:../~ is a probability 
measure on ( ,3  ~ )  that satisfies the DLR equations 

/~..id~../s..~ =/,z~./~ (1.3) 

Our first result is the following. 

T h e o r e m  1. Let d~>2. Then there exists a function f(),) with 
lim~.10 f ( ) , ) = 0  such that for all f l>  1 +J ' (y )  there exist at least two disjoint 
extremal infinite-volume Gibbs states with local specifications given by 
(1.2). Moreover,  for ~, small enough, f(7)<<. ~,tl ,:vl2,1+2~m+ i/a~ for arbitrary 
e > 0 .  

R e m a r k .  This theorem shows that the conjecture of ref. 5 is correct. 
Since, as explained, e.g., in ref. 5, it follows from Dobrushin's  uniqueness 
theorem ~s~ that fl,.(?,)/> 1 (in d = 2 ,  ref. 5 proves that fl,.(~,) t> 1 +b~,211n ~,], 
this implies that limr~ofl,.(~,)= 1 in the Kac model. While completing this 
work we received a paper  Cassandro and Presutti ~7~ in which the conjec- 
ture of ref. 5 is also proven, but no explicit estimate on the asymptotics of 
the function f(~,) is given. Their proof  is rather different from ours. 
Although at the moment  we make use of the spin-flip symmetry of the 
model, the contour language we introduce is also intended as a preparatory 
step for future use of the Pirogov-Sinai theory for nonsymmetric long- 
range models. 

We will in fact get more precise information on the infinite-volume 
Gibbs measures in the course of the proof. This will be expressed in terms 
of the distribution of "local magnetization" m.,.(a) defined on some suitable 

s The generic name ca will be used in the sequel for various finite, positive constants that only 
depend on dimension. 
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length scale 1 ,~ l ~ ), - ~. Given such a scale l, we will partition the lattice 77 d 
into blocks, denoted by x, of side length 1. Identifying the block x with its 
label x e Z u, we could thus set 

x=- { i e 7 Z ' ~ l  l i - l x l  <~l/2} (1.4) 

We then define for such blocks x 

m.,.(~)_~/1~ ~ a; (1.5) 
i �9 .x" 

In the sequel we will assume that all finite volumes we consider are com- 
patible with these blocks, that is, are decomposable into them. We will also 
assume that ~,I is an integer. For  any volume A compatible with the block 
structure we denote by J#.4 c ~ j  the sigma algebra generated by the family 
of variables {rex(a)} .,'~A" The block variables will be instrumental in the 
proof of Theorem 1. However, they are also the natural variables to charac- 
terize the nature of typical configurations with respect to the Gibbs 
measure. We should note that this first step of passing to the variables 
m,.(a) is also used in ref. 7; in fact it is used in virtually all work on the Kac 
model. 

The remainder of this article is organized as follows. In Section 2 the 
distribution of the block spins is formally introduced and the block-spin 
approximation of the Hamiltonian is discussed. In Section 3 we introduce 
our notion of Peierls contours and prove our theorem through a variant of 
the Peierls argumenU~3~ 

2. B L O C K - S P I N  A P P R O X I M A T I O N  

All the questions we want to answer in our model will after all concern 
the probabilities of events that are elements of the sigma algebras .J4 z for 
finite volumes V. If d e J4v  is such an event and A ~ V, we have the 
following useful identity: 

/~'../,...,( -~  ) = Y. ~ ~./,.,,(~,,\ v),-,..~,. ,, " " "  ' " "  ~#~,--, 
O" I\1" 

= Y. ~;',.,,.A(o~,\v) Y. ~},./,."~ , ( 2 . 1 )  
O-,I\V IH) : ,X  IE V 

The  sum ove r  m.,. runs o f  course ove r  the va lues { - 1 , - 1 + 2 l  - ' 1  , .... 

1 - 2l -a, 1 }. Note that we may, if J has compact support, assume without 
loss of generality that A is sufficiently large so that the local specification 
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p < ' \ '  "~." does not depend on r/. We will therefore drop the q in this expres- 
~,.fl, V 

sion. 
The main point which makes the Kac model special is that the 

Hamiltonian is "close" to a function of the block spins. Namely, we may 
write 

H r - v ( a , ~ , a v ' ) = - � 8 9  Z ~, J,.(i,j) a ,a i -  E E J,,(i,j) a,~/ 
X, .1'~ V i e x  j E  I' .x'~ V . I ' E  I "c i E X ,  j E . I ,  

= - "  E J,,(/(x-y)) 
x . . 1 ' ~  I / i 6 . v .  j E . v  

-- ~. J,,(l(x-y)) ~ a,aj 
A" E V, y ~ F "r i E x . /E  v 

I --~ ~ ~ [Jr(i--j)--J~.(l(x--y))] a~a/ 
x .  y E F" i ~ x ,  j ~ y 

_ 14wl v( m v(a v), m v,.(a v,)) + zIH~../, v(a v, a v,-) (2.2) 

where we have set [recall that Jy(Ix)= l-'lJir(x)] 

HIO, , lal y.t.v(mv, mv,)=_-- - ~ Jr~(x-y)m,mv 
A', y E V 

- I a ~ J~.l(x - y )  m,m.,, (2.3) 
.x" ~ V, .v E V c 

and 

dH,.a.v(av, a w ) =  --~ ~ ~ [ J , , ( i - j ) - J , . ( l ( x - y ) ) ]  a,a/ 
x 3"~ I / i ~ . x ' , j ~ y  

-- ~ ~ [ J ~ , ( i - j ) - J ~ , ( l ( x - y ) ) ]  a,aj (2.4) 
.x" E V. .i, e I F`. i e x j e v 

Lemma 2.1. For any V ~ Z  a 

sup [dHrd" v(av, av,.)[ <~ c dyl IV[ (2.5) 
a 

where ca is some numerical constant that depends only on the dimension d. 

Proof. This fact is well known and simple for all Kac models. In our 
case it follows from the observation that [ J y ( i - j ) - J f l ( x - y ) ) ] = O  
unless I x - y [  .~ 1/(yl). ] 

8 2 2 / 8 7 / I - 2 - 2 2  
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As consequence of Lemma 2.1, we get the following useful upper and 
lower bounds for the distribution of the block spins: 

-,\, . . . .  _< exp[ --fllaHl,~ my, ) I-[.,-~ v E~,,,,.(~, ..... 
/1 ~,:/~. ,Am ,~-~ > Z,,,,. exp[ --flldH~.~ v(m v, mw)] I-[.,- ~ v IFfi,,,A,,, ..... 

x exp( +/~c,~4 I VI) (2.6) 

Of  course, 

{i,, / Eft  . . . . . . . . . . .  ( l+m, . ) la /2  if ldm,. /2sZ 

otherwise 

(2.7) 

and this, by Stirling's formula, 

2 - ' "  ( ld '~ 
( 1 + m.,.) ta /2 /= e-I"t('"~ + o(i. i~ (2.8) 

where l(m), for m ~ [ -  1, 1], is 

1 + m  1 - m  
I(m) = - - ~  In(1 + m ) +  ~ - - l n ( l - - m )  (2.9) 

Therefore we define 

E;'.l~.,.,~(mv, m , " )=- - � 89  Z 
A'. ) '  ~ [" 

- 2 
A" E | I  .|, ~ |.', 

to get the following result. 

L e m m a  2.2.  
have 

J~.l(x --  y )  m., .m,.  

J~v(x--y)m.,.m.,.+ fl -I ~. I(m,_) 
.X'E V 

(2.10) 

For  any finite volume V and any configuration m v we 

It+.,\, t,~,.)% exp[-fllaE~'./t.l.v(mv'mv'(av"))] exp( +flcafllVI) 
r.l~.,"'" ~,,,,.exp[--fllaE~,/~.l.v(mv, m,.,(a,~.))] 

(2.11) 

R e m a r k .  / will be chosen as tending to infinity as }, tends to zero. 
The idea is that  that E~../j.~. v is in a sense a "rate function"; that  is, Er./~.~. v 
alone determines the measures since the residual entropy is only of the 
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order [ (d  In l)/l a] [V[. The problem is that this is only meaningful when we 
consider events d for which the minimal Ev,/~,l" v is of order [ V[ above the 
ground state to make sure that neither the residual entropy nor the error 
terms in (2.11) invalidate the result. We will have to work in the next 
section to define such events. 

It  is instructive to rewrite the functional Ev, pj " v in a slightly different 
I 2 I 2 2 m,,) --_~(m.,.+ my) (we drop the indices form using that -m.,.m;,= ~(m., .-  _ 

7, fl, l henceforth, but keep this dependence in mind). We set 

E v ( m , , , m v . ) = ~  ~ Jvt(x--y)(m.,---my) 2 
x , | , E  P" 

+�89 ~" Jv,(x-y)(m,.-m., ,)2+ ~ f/~(m,.) (2.12) 
x E  V , ) , ~  g"  x ~  V 

where f/~ is the well-known free energy function of the Curie-Weiss model, 

f/~ = [ f l -  ' I ( m , . ) - '  2 . 5 m , . ]  ( 2 . 1 3 )  

Then 

Ev(mv, mw)= Ev(mv, m y , . ) -  Cv(mv,-) (2.14) 

where 

Cv(m v.) =- �89 ~. Jrt(x - y )  m~ (2.15) 

depends only on the variables on V c. 
The form 2~ v makes it nicely evident that the energy functional favors 

configurations that are constant and close to the minima of the Curie-  
Weiss function flu(m). 

3. PEIERLS C O N T O U R S  

In this section we define an appropriate notion of Peierls contours in 
our model and use this to prove Theorem 1 by a version of the Peierls 
argument. 4 ~I'he general spirit behind the definition of Peierls contours can 
be loosely characterized as follows: We want to define a family of local 
events that have the property that at least one of them has to occur if the 
effect of boundary conditions does not propagate  to the interior of the 

4 While the proof of ref. 7 is also based on a Peierls argument, their definition of Peierls 
contours is completely different from ours. 
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system. Then one must show that the probability that any of these events 
occurs is small. This requires in particular that the excess energy associated 
with such an event must be bounded from below uniformly with respect to 
what happens away from where the event is localized (in contrast, e.g., to 
the event ao = - 1 ,  whose local energy depends on the configuration sur- 
rounding the point 0). It  is customary to call such events Peierls contours. 
We will define contours in terms of the block spin variables m,.(a). More 
precisely, since it is crucial for us to exploit that the new interaction is still 
long range, 5 contours will be defined in terms of the local averages ~b.,.(m) 
and the local variances O.,.(m) defined through 

~b.,.(m) = ~ J~,l(x - y) m.v (3.1) 
3' 

O.,.(m) = ~ J~.l(x - - y ) (m: , -  q~.~,(m)) 2 (3.2) 
Y 

Then define the set 

_F-- {xl I kb.,.(m)l- m*(fl)l > ~'m*(fl) or ~.,.(m)>((m*(fl)) 2} (3.3) 

where m*(fl) is the largest solution of the equation x = tanh fix, that is, the 
location of the nonnegative minimum of the function f/~. We recall (see, 
e.g., ref. 10) that m*(fl) = 0 if fl ~< 1, m*(fl) > 0 if fl > 1, lim/~ r ~ m*(fl) = 1, 
and lim/~tl[(m*(fl))z/3(fl - 1)] = 1. To simplify notation we will write 
m* =m*(fl) in the sequel. ( <  1 will be chosen in a suitable way later. Note 
that if the boundary conditions are such that, say, ~b,.(m(r/))~ - m * ,  then, 
if the configuration near the origin is such that ~b0(m(a))< 0, there must be 
a region enclosing the origin on which ~b takes the value zero and thus 
belongs to ~. For  a reason that will become clear later, in a first step we 
will regularize this set. For  this we introduce a second blocking of the 
lattice, this time on the scale o f  the range o f  the interaction. The points u 
of this lattice are identified with the blocks 

u = -  {x~e/'Zl l x - u l ( ~ l )  I <<. 1/(27l)} (3.4) 

just as in (1.4). We write in a natural way u(x) for the label of the unique 
block that contains x. We will call sets that are unions of such blocks u 
regular sets. We put 

_to =- {x lu (x )  c~r~ ~} (3.s) 

s For that reason it is not possible to use directly the methods developed in ref. 9 for studying 
low-temperature phases of short-range continuous-spin models, although some of the ideas 
in that paper are used in our proof. 
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For some positive integer n 1> 1 to be chosen later, we now set 

_F= {xldist(x, _Fo) ~< n(),l)- '  } (3.6) 

where dist is the metric induced by the sup-norm on R d. The integer n will 
depend on fl and diverge as fl ~ 1. The precise value of n will be specified 
later in (3.48). Notice that this definition assures that the set __F is a regular 
set in the sense defined above. Connected components of the set _F together 
with the specification of the values of m.,., x eft ,  are called contours and are 
denoted by F. For  such a contour we introduce the notion of its boundary 
F in the following sense: 

OF= { x e_F I dist(x, __F c) ~< n(),l) - t} (3.7) 

Note that by our definition of F we are assured that OF c~ Fo = J ~ .  We 
denote 

O +- = (xll~b., .(m)~m*l ~<r c~E" (3.8) 

and call these regions _-correct.  Each connected component of the bound- 
ary of F connects either to D § or D - .  We will denote such connected com- 
ponents by aft,. + and 0_1" 7 , respectively. 

For  a connected set _F we denote by int_F the simply connected set 
obtained by "filling up the holes" of _F. This set is called the interior of a 
contour. The boundary of int _F will be referred to as the exterior boundary 
of _F. The connected component of 0!-" that is also the boundary of int_F 
will be called the exterior boundary of F and denoted by Off ext. 

The strategy to prove Theorem 1 is the usual one. First we observe 
that if boundary conditions are strongly plus, then in order to have that, 
say, I~b0(m) - m* I > (m*, it must be true that there exists a contour F such 
that 0 e int_F. Thus it suffices to prove that the probability of contours is 
sufficiently small. This will require a lower bound on the energy of any con- 
figuration compatible with the existence of_F, and an upper bound on a care- 
fully chosen reference configuration in which the contour is absent. We will 
show later (Lemma 3.8) that a lower bound on the energy can easily be 
given in terms of the functions r and ~k, a fact that motivates the definition 
of F. The long-range nature of the interaction and the fact that the m.,. are 
essentially continuous variables require the construction of the extensive 
"safety belts" around this set in order to assure an effective decoupling of 
the core of a contour from its exterior. The crucial reason for the definition 
of contours through the nonlocal functions ~b and ~b is, however, the fact 
that these are "slowly varying" functions of x for any configuration m. 
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Therefore, even if the core ~ is very "thin" (e.g., a single point), one can 
show that on a much larger set kb0(m)-m*l or qL,.(m) must still be quite 
large (e.g., half of what is asked for in F). This guarantees that in spite of 
the very thick "safety belts" we must construct around F, the energy of a 
contour compares nicely with its volume 1_/3. 

We will now establish the "decoupling" properties. For this we must 
establish some properties of the configuration m on Off that minimizes Eor 
for given boundary conditions. 

Def in i t i on  3.1. A configuration m] pt is called optimal i fm ~ mini- 
mizes Ev(mv, m~) for a given configuration my,. 

An important point is that away from F, due to our definition of 
contours, configurations must be close to constant in the following sense: 

L e m m a  3.2. Assume that xr Then: 

(i) If dist(x, _F) > 1/(fl), 

Jrt(x -y)(my +_ m*) 2 ~< 4(2(m*) 2 
.i, 

(3.9) 

(ii) For any V~_P ~ 

] I/2 
Z J,4(x--Y)Imy+rn*[ ~<2(m* ~. Jy,(x-y) (3.10) 

t'E V )'E 11 

where the sign depends on whether ~b,_(m) is positive or negative in the 
region. 

Proof, The proof of (3.9) is straightforward from the definition of_F 
in (3.3), and (3.10) follows from (3.9) by the Schwartz inequality. 1 

We will now establish properties of an optimal configuration on 
regular sets with boundary conditions that satisfy properties (3.9) and 
(3.10). 

Lemma 3.3. Let V be a regular set. Then there exists Ca> 0 depend- 
ing only on the dimension d such that if m v, is a boundary condition of 
( + )  type for which (3.9) and (3.10) hold with (~<(d, then for all x ~  V, 

opt m,. --m*l<~m*/2. The corresponding statement holds for ( - ) - t y p e  
boundary conditions. 
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Proof. We see f rom (2.10) that  we mus t  have, for y e  V ~  6 

d 
0 = ~ Ev(m v, m v,) = fl-'I'(m.,,) - (b.,,(rn) 

u f g l  v 

(3.11) 

(3.11) can be writ ten as 

my = tanh(fl~b.,.(m)) (3.12) 

We m a y  tacitly assume tha t  ~,,(m) is positive (this assumpt ion  will be 
shown to be consistent).  Since m* in a stable fixed point  of  the function 
tanh tim that  a t t racts  all points  on the positive half-line, it follows that  
[tanh(fl~b.,,(m))-rn*[<.[q~.,,(m)-m*[ and in part icular ,  if ~ y ( m ) < m * ,  
tanh(fl~.,.(m))>~.,.(m), while for ~b.,.(m)>m*, tanh(fl~.,.(m))<~,.(m). We 
will first show that  m ~ >.m*/2. Let x e  V denote  a point  where 

m.,. = .inf.{ m,. I my <~ m* } (3.13) 

If  m.,. = m * ,  there is nothing to prove.  But if m.,. < m * ,  then (3.13) can only 
be satisfied if dist(x, 0 V ) <  1/(fl). For  such points  we can write 

m.,.--m*>~ ~. Jyl(x--Y)(m,.--m*)+ ~ J~ . t ( x -y ) (my-m*)  
y E P" ' E l / r  

[ ~>(m. , . -m*)  ~ J r / ( x - y ) - 2 ~ ' m *  ~, J~.t(x-y) (3.14) 
I ' E  V . I 'E V c 

where the second line follows by (3.10). Hence  

2~m* 
m . , . - m *  >~ [Z.,,~v, jy l (x_y)] l /2  (3.15) 

On  the other  hand,  (3.14) holds for any other  point  y e  V as well, and 
inserting this into the first line of  (3.14), we get 

m,.-m*>,(m. , . - -m*) ~ ~', J r l ( x - y )  J y l ( y - z ) - 4 ~ m *  (3.16) 
.|' E V .z E V 

6 We ignore the fact that m.,. takes only discrete values and look for the optimal solution in 
the space of real-valued m. The point is that given such a solution, a discrete-valued 
approximation can be constructed that differs in energy by less than LI'l/I a, which is 
negligibly small. 
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Clearly, we have won if either 

1-- ~ ~" J,4(x-y)J,.,(y-z)>~8( (3.17) 

or 

] I/2 

J,4(x-y) >_-4( (3.18) 
I' ~ 111 

Due to the fact that V is composed of cubes of side length of the range of 
the interaction, this follows from simple considerations if ( is smaller than 
some dimension-dependent constant. (Here is the reason for our definition 
of_F o.) In fact, 

1-- ~, ~" J,4(x--y) J,4(y-z) 
. r E  V .T G V 

Jyt(x-y)+ ~ ~ Jr,(x-y) Jr,(y-z) (3.19) 
.1"~ I pc I ' E  11 2 E  V c 

The point is that the second term on the right-hand side (3.19) cannot be 
too small as long as dist(x, V c) ~< 1/(yl), for regular V (if V is not regular, 
this statement does not hold, of course; just consider a thin, long spike 
entering into V and let x be near the tip of the spike!). In fact, that worst 
situation here occurs if x is at a distance r/(),l) from a "corner" of V". One 
easily verifies that even in this case 

Y. J,.,(x -y )  J,.,(y- z) 
y E V z E I/c 

I 

~>2-1d+'l fo ds(r + s)d-'(1--s) d 

I• --s)d >~2-~a+l) dssd-t(1 

= 2 - I , l +  21 ( ( d -  1 )! )2 
( 2 d -  1)! (3.20) 

so that (3.18) is verified if 4( is smaller than this number. The numerical 
value of that bound can of course be improved, but we do not seek to do 
that. 
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Having established that m,. >~m*/2 in V, a trivial computation shows 
that our starting assumption that ~b.,.(m)> 0 is also verified. Thus we have 
proven that m ~ >~ m*/2 .  In the same way one shows also that m~ t ~< 3m*/2, 
which concludes the proof of the lemma. | 

In the sequal the notion of n-layer set defined in the following defini- 
tion will be convenient. 

D e f i n i t i o n  3 .4 .  A regular set V is called an n-layer annulus if it is 
of the form 

V= {xe  if" I dist(x, V) <n() , / ) - '}  (3.21) 

for some connected set V that is composed of blocks u. The sets 

G = { x e  V~' I(k - 1)(),/)-' <dist(x, V)<~k( ) , l ) - ' }  (3.22) 

are called the kth layers of V. 

Note that the sets Off are by their definition n-layer sets. 
We are interested in some properties of optimal configurations on 

n-layer sets. For this we will use the following simple fact about the func- 
tion f/~, which may be found, e.g., in ref. 2: 

L e m m a  3.5.  Let  J } ~ ( m ) = f l - I I ( m )  ' " - ~m-. Then, for all m ~ [ - 1, 1 ], 

flu(m) - f l u ( m * )  >1 c(fl)( Iml - m *  ) 2 (3.23) 

where 

In cosh(flm*) 1 
c(fl) = fl(m.)2 - ~ (3.24) 

has the property that c(fl) > 0 for all fl > 1 and 

lim c(fl) 1 /,;, ~ = ~  (3.25) 

From this we will derive the following lemma (the analog of this 
lemma for short-range and purely quadratic Hamiltonians appeared 
already in ref. 9). 



324 Bovier and Zahradn|k 

k e m m a  3.6. Let V be an n-layer set with n >1 r/c(fl). Then there 
exists a layer Vk in V such that 

(m ~ -T- m*)  2 ~< 2-' �89 V, I + I v,,I) 
x e  ~ 

(3.26) 

with T depending on the type of boundary conditions. 

Proof. We assume that the boundary conditions are of ( + )  type. 
o p t  Note that by Lemma 3.3, we know that for x e V, m.~.~ = Ira,- I. Let us set 

u.,.- Im,.I-  m* and and use the abbreviation 

Ilu,,~ll_~- ~ (u,.)-" (3.27) 
x e I2. 

and analogously for other functions. Then it is obvious from (2.12) that for 
any configuration 

i t - -  [ 

L'vXi.tXV_,(m,.xv, xr,,,mv,~,.,,)~> ~ c(fl)Iluv~ll_~+ Z f/j(m*) (3.28) 
k = 2 .x" e V \  VI \ I/n 

On the other hand, we may consider a configuration that equals m ~ 
on V~ and V,, and has m.,.= m* for all x e  V\V~\V,,.  For this configuration 

m O p t  ,~ EV\I/I\I.-~(/H l/\Vl\l-n = m*, r'l w i.,,1 

=�89 ~. Jr t (x-y) (m~ + ~ flu(m*) (3.29) 
s E V \  V I \ 16~ x E l " \  VI \ I/n 
. l '~ VI ~ Vn 

By the definition of m ~ it must thus be true that 

op t  0 >1 Ev\v,\v~_(m v\v,\v,,, m~'~ v.) 

[ o p l  o p t  

n -  I 

i]Uv*I[2-- i Z J~,t(x--y)(m~ 2 
k = 2  x e  VXVI\Vn 

y 0 I/i t~ V, I 

n - -  I 

Z C ( ] ~ )  2 1 o p t  9 o p t  2 Iluv~ll2-_~(lluv-iI1_; + Iluv. 112) 
k = 2  

(3.30) 
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Thus, for any q < n/2, we have 

q + l  

qc(fl) in( opt _, opt , I'lluv,. tlz+ uv.+,_~ll2] 
k = 2  

i i - -  1 
E C op t  7, / , /opt  2 7 (b ')f i luv~/I ,_-+ ,, ,-0+,_,.,,2J 

k = 2  

~<�89 opt 2 • luOp, 2 (3.31) Iluv, 112+2 v, 2 

from where 

q + l  1 

" " Iiuv, 112 + llu,,, ll2] (3.32) in( [llUv~li~+llu,~,,+,_~ll;]<~_---v-~.~. [ or,, 2 op, 2 
k = 2  2qc(15 ) 

If q is chosen as the smallest integer greater than 1/c(fl), this shows that 
there exists 2 ~< k ~< q + 1 such that 

7, 7, I r I l l , /~  2 op t  2 Ulluvkll;_+ Iluv,,+,_~ll;_] <~ ~_L,, v, , 2 +  ]lu,.~ 112] (3 .33)  

Iterating this construction and using that by Lemma 3.3 

st{u<' op,{({+4_ _ t, ~ " -~(m*) ( IV~I+IV, , [ )  (3.34) - " Vt 2 

we arrive at the assertion of the lemma. I 

We are now ready to construct our reference configuration and give an 
upper bound on its energy. For  given contour F and compatible external 
configuration m on _F" and on the core _F we call m ~ the configuration on 
F that minimizes the energy under these boundary conditions. Clearly such 
a configuration is also an optimal configuration on 8_F in the sense of 
Definition 3.1. Thus by Lemma 3.2 we know that in each connected com- 
ponent 3F~ of the boundary of F there exists a layer 3a~ of thickness 
1/(),/) in 3F~ such that 

opt  - -  * 2 IIm~ + m  112 4 2 - " ~ ( m * )  2 [IvdO_F~)l +IV,,(O_F+)]] 

For given ~ +  we decompose 0F  + into the two sets 

3 _ F + , , = - { x ~ O F + \ ~  ]d i s t ( x ,D+)>d i s t (~+ ,D+- ) }  (3.35) 

4- 4- O_F,+o,,, =- OF'i- \0s (3.36) 
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Without loss of generality we assume that the exterior boundary of 
our contour is attached to the +-correct  region. We now define the 
reference configuration m ~r 

opt if x e O Fr m.v 

/ --ma~ if xeO_Fgu  ~ 

r~r_ ~ m *  for all other xe_F m A, 

m,. for x ~ D  + 

\ - -m. , .  for D -  

(3.37) 

Lemma 3.7. Let m r~r be defined in (3.37). Then for any compatible 
external configuration we have that 

r e f  r c f ~  E l ' ( m  l" , ~ Z - o p t  r e f ,  mr, )  EoZ.~o,,(moFg. l, m!.,) 
i,+ 

+ Z 2 -"�89 )2 [ I VI )~/~i +- )1 + [ Vn(O~/'~/--+ )1] 
i .+ 

+ ~ f/j(m*) (3.38) 
x ~ ! ' \ O ! ' , , u t  

Proof. The proof of this estimate is obvious from the definition of 
m r~r and Lemma 3.6. Note that in the terms 

Ee~ L~ ocLo, m r, ) 

the interaction energy between O_F~+ou, and OF+, is not counted. I 

Of course the configuration m rcf does not contain the contour F. It 
remains to find a lower bound on the energy of any configuration m that 
does contain a contour with given ~. 

To do this, we use the following observation. 

Lemma 3.8. Let U, V, W c Y  '1 be any three disjoint sets such 
that for all y ~ U w W ,  Y ~ , . ~ u , ~ w ~ , v J r ~ ( x - y ) = l ,  and for any y e U ,  
Z.,.~ uu , . J r l ( x - Y )  = 1. Then 

/> �88 ~ O.,.(m) + �89 ~ [f/~(m.,.) +J)~(~.,.(m))] + ~ f / j (m*) (3.39) 
x ~ U .v ~ U t_, I,I z .v ~ I" 
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Proof. The proof of this lemma is a simple, but, mainly because of 
boundary effects, somewhat lengthy computation that we do not wish to 
reproduce here. To get the idea, note that in finite volume we have (formally) 

1 
- ~  ~ m.,.m.,.J,.,(x-y) + fl- '  ~ I(m.,.) 

.x" l, .x" 

1 Em.+r , E i(m,+) 
2 

A" .X" 

(m.,.--~+,.(m))- roT,. (~.~(m))-b~fl_lI(m.,.)+.~fl - 
.- 4 4 4 

(3.40) 

where we have put ~b,_(I(m))= Z+,, Jvl(x-Y)  I(m;,). The last line is obtained 
by inserting the identity 1 =Z., ,Jrl(x-Y)  in the I(m) term and changing 
the order of summation in the resulting double sum. Using the same trick 
for the first term in the last line of (3.40), and using that, since I is a convex 
function, ~b,.(I(m))>~I(~b+,.(m)), one gets that 

I [ �88 + �89 + ~f,,(m.,.)] (3.41) 
A" 

is a lower bound for (3.40). Trying to repeat this computation in finite 
volume and carefully dealing with the boundary terms leads to the more 
complicated-looking formula (3.39). I 

The main point in the estimate (3.39) is that it allows us to bound the 
energy of a configuration from below in terms of ~b.,.(m) and O.,.(m) alone. 
Namely, taking for V and Uw W the layers Aa~ and the regions "within" 
~ + ,  we see that for any configuration 

F,_r(mr, mr <+) >>- ~. Eori*.o,,(m+r+ou, mr ,+) 
i,+_ 

+�89 ~ [ fp(~b.,.(m)) - f/~(rn* ) ] 
.,.+ ,~ E \ O _ r o . t  

+ �88 q,,.(m) 
x E _ r ' \ O F o u ,  

d i s t ( x , 0 / ' o m  ) > I / ( 7 / )  

+ ~ fp(m*) (3.42) 
x ~ E \ O F o m  
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ties. 
Next we show that both ~b,_(m) and ~.,.(m) have nice continuity proper- 

L e m m a  3.9. There exists a finite constant ca depending only on the 
dimension d such that for any contour F, if ~ denotes the set 

(0n*/'-] 
_I ~ -  yldist(y,-_I')~ 8ca7 l j (3.43) 

then for all y e ~ ,  II~b.,.(m)l -m*l  >>,(m*/2, or ~,.,.(m)/> ((m*)2/2. 

Proof. Since Im.,-I ~< 1, it is a simple geometric fact that 

I~b.,.(m)- t.b~.(m)l ~< ca I x - Y l  ),1 (3.44) 

and 

Iqz,.(m)- qZ,.(m)l <,4ca I x -  yl ),l (3.45) 

for some geometry-dependent constant ca. Since on g I~b,.(m)l >~(m* or 
~.,.(m)/> ((m*) 2, the assertion of the lemma follows. I 

R e m a r k .  The estimates of Lemma 3.9 are very crude. In particular, 
we only use the trivial bound Im.,-I ~< 1, whereas we would expect that, at 
least for configurations with low energy, it should be true that, say, 
Im.,.l ~< 2m*. This seems intuitively obvious, but we have not found a simple 
rigorous argument. To prove such a statement would considerably improve 
our bound on the critical temperature. 

A further simple geometric consideration shows on the other hand 
that ~ cannot to too small compared to _F, namely: 

L e m m a  3.10. There exists a numerical constant C'a depending only 
on the dimension d such that for any contour F, we have that 

(17 + 1 ),/ 
IEI ~< c', ((m,)_,------ 7 I__rl (3.46) 

Proof. Note that I_/'I/I_Pl is maximal i f ~  consists of a single point, in 
which case (3.46) is obvious. | 

Combining the upper bound on the energy of m r~j̀  from Lemma 3.7 
with the lower bound (3.42) obtained from Lemma 3.8 applied for the 
optimal configuration, using the fact that that E and L" differ only by a 
constant that depends only on boundary conditions, and finally employing 
Lemma 3.10, we arrive at the following result. 
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Propos i t ion  3.11.  Let F =  (_F, m) be a contour with fixed _F. Then 
there exists a reference configuration mrer in which F does not occur such 
that 

Er.(mr, mr,) _ Er(m~,] mr ,  )re, 

1 c(fl) ((m*) -'a+2 1 
/>8 ca ( n + l ) d  I -Fl -~(m*)  22 .... '/~'IEI (3.47) 

where Cd is a finite, dimension-dependent constant and c(fl) is the constant 
from (3.24). 

Proof. We bound E r ( m t . , m r , )  from below by the corresponding 
energy of the configuration m of lowest energy for given _F; on the belt of 
the contour this provides an optimal configuration in the sense of  Defini- 
tion 3.1. The same configuration is used in the construction of mref. After 
the obvious cancelations and using (3.46) and the fact that c(fl) ~< 1, we get 
the assertion of the proposition. | 

We must now begin to choose our parameters. We want the Peierls 
condition, i.e., that the coefficient of I_F] in (3.47) is positive and as large 
as possible. The most convenient choice appears to be to choose n in such 
a way that 

2 .... Ira_ 1 c(fl)(~m*) 2a 
2 ca(n+ 1) d (3.48) 

Calling the solution 7 of this equation n*, we get the Peierls estimate 

1 c(fl)((m*) 2d+2 
Er,(mz,, m r,) - El_.(m~ .~.r, mT~) >1 16 cd(n + 1 )d (3.49) 

It is not difficult to verify that 

C ~ c(fl)(On*)'-'!] (3.50) 
n* <~ c(fl) In [ 2C d 3 

for some numerical constant C if c(fl) is sufficiently small. 

7 By this we will of course understand the smallest integer larger than or equal to the "'real" 
solution. 
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This estimate on the energy difference will only be useful for us if it is 
large compared to the error terms arising from the block approximation. 
That is, we must make sure that 

1 c(fl)(Qn*) 2a+2 
> c,1),l (3.51 ) 

16 ca(n+ 1)'1 

(the two ca in this formula are a priori not the same quentities). This gives 
a relation between temperature-dependent quantities on the one hand and 
yl on the other. It does not impose any choice on the parameter l. This 
arises from the last condition, the comparison between the energy of a con- 
tour and the entropy, i.e., the number of configurations m on _F and of 
shapes _F with fixed volume [_FI. Even the crudest estimate shows that this 
number is smaller than I awt C Lru, so that (5.52) is complemented by the 
condition 

f l l"[  l c,,(n + 1)'1 > d l n l + l n C  (3.52) 

which requires / to be sufficiently large. In fact we may choose l as 

1 1 c( f l ) ( (m*)  2d+2 

l = ) ' - I C d 3 2  ca(n +1)  a (3.53) 

which, inserted into (3.52), gives the final condition of fl in terms of y. It 
is clear that for any fl > 1, i.e., c(/~) > 0 and m* > 0, this condition can be 
verified by choosing y sufficiently small. Thus, using Lemma 2.2, we proved 
the analog of the Peierl's argument here, namely that the probability of a 
given contour F is smaller than exp( - c  ]_F I-Iln l I), which in turn implies 
that the probability that the origin is in the interior of a contour is close 
to zero [ in fact of the order exp( - cfln'l I ln l I ) ]. Moreover, by inserting the 
asymptotic behavior of m* and c(fl), one verifies easily that if we put 

f l -  1 = y~ -,.:}/(2d+ 2lt l + l /d) (3.54) 

for arbitrary e > 0, then (3.52) is verified when y is sufficiently small. This 
gives thus the claimed bound on the behavior of the critical temperature as 
), tends to 0. 

This concludes the proof of Theorem 1. II 

Remark. Let us recall some consequences of what we have just 
proven: if V denotes the union of the interiors of all the contours of a given 
configuration, then the Gibbs probability of the event 

dist(i, V c) >/r (3.55) 
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is independent of the choice of the point i e Z d and behaves like exp( - Cr), 
where C = C(fl, ~,). This implies, for example, the following statement: The 
probability of the event that the support of all contours surrounding a 
given point is infinite is equal to zero. One could even refine such a state- 
ment, giving a more precise meaning to the intuitive idea that "almost 
all" configurations (of the mesoscopic observables m) in the translation- 
invariant +Gibbs ensemble have their local averages [in the sense of the 
variables ~b.,,(m)] in the vicinity of m* except for some (rare, but uniformly 
distributed throughout the lattice) "islands." (This is the appropriate 
rephrasing of the statement in Sinai's book/~4~ 
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